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Diophantine Approximation of Ternary Linear Forms* 

By T. W. Cusick 

Abstract. The paper gives an efficient method for finding arbitrarily many solutions in 
integers x, y, z of the Diophantine inequality Ix + ay + 13z1 max(y2, Z2) < c, where a 
defines a totally real cubic field F over the rationals, the numbers 1, a, ,B form an integral 
basis for F, and c is a constant which can be calculated in terms of parameters of the method. 
For certain values of c, the method generates all solutions of the inequality. 

1. Introduction. The following theorem is a standard result in the theory of 
Diophantine approximation [1, p. 14]: 

Let n be any positive integer and let 06, *. , 6a be any n real numbers; then for 
any constant c _ 1 there exist infinitely many solutions of 

|O1x1 + + O.xn - yj max fxi I < c 
1 S n 

in integers x1, ... Xn y. 
If n = 1, the continued fraction algorithm enables us to actually calculate arbi- 

trarily many solutions xl, y of the above inequality with c = 1 for any given 01. 
If n > 1, I do not know of any method for finding arbitrarily many solutions which 
is both efficient and applicable to a wide class of 01, - * , on. 

The purpose of this paper is to give an efficient method for finding arbitrarily 
many solutions in integers x, y, z of 

Ix + ay + fzI max(y2, z2) < c, 

where a defines a totally real cubic field F over the rationals, the numbers 1, a, ,B 
form an integral basis for F, and c is a constant which can be calculated in terms 
of parameters of the method. For small values of c, the method generates all solutions 
of the inequality (see Section 7 below). 

There is a paper by Peck [4] which discusses the dual problem of simultaneous 
Diophantine approximation to two irrationals in a cubic field; indeed, the general 
problem of simultaneous approximation to n > 2 irrationals in an algebraic number 
field of degree n + 1 is treated. However, Peck does not deal with the problem of 
actually finding solutions to the Diophantine inequalities; his approach gives in- 
formation on other aspects of the situation (see the results in [4]). 

The method of this paper can readily be used for actual machine computation 
of solutions. I have attempted to write the proofs with this end in view, even if this 
results in some sacrifice of brevity. A numerical example of the application of the 
method is given in Section 6. 
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164 T. W. CUSICK 

The first step in applying the method is to find a pair 0, (p of fundamental units 
with norm 1 in F, such that 0 and its conjugates satisfy certain inequalities (formula 
(27) in Section 5 below). In order to simplify the exposition, I give complete details 
of the method only in the special case in which ,B- a2 and a = 0. The modifications 
necessary to deal with the more general form x + ay + ,Bz are discussed in Section 5. 

2. A Paper of Minkowski. Let t = (lx + t2y + t3Z, v = 7l7x + fl2Y + 723Z, ? = 

PIX + t2Y + P3z be three real linear forms with positive determinant A. The in- 
equalities 11 <- P JIJ I cr Ia l < r define a parallelepiped symmetric with respect 
to the origin in three-dimensional space. Let { p, a, r} denote this parallelepiped. 
Suppose that { p, a, r} has no integer lattice points other than the origin in its interior, 
but has at least one lattice point not on an edge on each of its six faces. Minkowski [3] 
called a parallelepiped with these properties extremal, and I adopt his definition. 
Clearly I p, a, r} is extremal if and only if its interior contains no lattice point other 
than the origin and no one of its defining parameters p, o-, r can be increased without 
introducing a lattice point into the interior. 

Minkowski's paper [3] is mainly devoted to a detailed discussion of extremal 
parallelepipeds, In particular, he stated the following: 

THEOREM A (MINKOWSKI [3, p. 281]). Let t, q, r be any three real ternary linear 
forms with positive determinant A and with the property that none of t, q, r vanishes 
for any iitegral point other than the origin. If { a, g, l} is an extremal parallelepiped 
for t, q, r, then agl < A. There is exactly one integral lattice point in each face of 
f a, g, l}, the points in opposite faces having coordinates with opposite signs. One can 
always find in one and only one way three lattice points (ri, si, ti) (i 1, 2, 3) in the 
respective planes t =ea, =- eg2, .s = e3l ((i--I=1) such that e1l2e3 = 1 and such 
that, if the matrix P is defined by 

ri r2 r3 

P= S! S2 S3 

_t1 t2 t3I 

then 
[l ei e1 t2 el r a i b iLc 

e2ftl E2772 E2773 P i f g 4h h - , say, 

_IE31 3 2 3 3_ :L:j 4Sk Ii 

where the numbers a, b, c, f, g, h, j, k, I are all positive and have signs agreeing with 
one of the Jbllowing six systems: 

I II III IV V VI 
+ ++ + -- + -- ++-_ +-_+ +-_- 

_-+ 
_ + ++ _-+ 

_ _+ + + + _ 
_+-_ 

_--+ --_+ + ++ + -+ - ++ - -+ 

Furthermore, det P- 1 in cases I to V and det P = 0 in case VI. In every case the 
inequalities 
(1) a>b, a>c, g >f, g>h, > j, l>k 
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hold, and in the separate cases the following further conditions are satisfied: 

I II III IV 
b+c>a h+f>g j+k>l b>c or h >f 

f > h or j> k k > j or b> c c> b or h > f or j > k 

V VI 
c>b or f>h or k>j b+c=a, f+h=g, j+k=l 

As Minkowski points out [3, p. 281], the restriction in Theorem A on the integral 
points for which i, 7 or v can vanish is made only for convenience in stating the 
theorem. In any case, all the linear forms considered in this paper will satisfy the 
conditions of Theorem A. 

Following Minkowski, we say that the matrix P transforms the system E1-, 62 q, 

E3, to 45, and that P (which is completely determined by { a, g, l}) is the matrix as- 
sociated with { a, g, 1}. We also say that P belongs to i, ?7, t. 

The conditions of Theorem A, cases I to V, are not only necessary for a matrix 
to belong to (, -q, A, but are also sufficient, because of the following: 

THEOREM B (MINKOWSKI [3, p. 282]). If an integral matrix P of determinant I is 
so chosen that it transforms E,t, E277, C3? with suitable signs E1, E2, C3, into a matrix 4) 
which satisfies all the conditions of Theorem A for one of the cases I to V, then P is a 
matrix belonging to A, 'q, t. 

Minkowski went on to give a rather complicated algorithm by means of which 
all extremal parallelepipeds for i, g, ? can be constructed from any given extremal 
parallelepiped. The algorithm associates with each extremal parallelepiped exactly 
three others called the neighbors of the given parallelepiped. For example, the t- 
neighbor of the extremal parallelepiped { p, a, r } is obtained by lowering the t-faces 
of { p, a7, -r (that is, decreasing p) until each meets an integral point in one of the 
-q- or c-faces; then the -- or i-faces, respectively, are raised until each meets an integral 
point. This process clearly results in a new extremal parallelepiped. The 77-neighbor 
and c-neighbor of { p, a-, r} are defined analogously. Minkowski proved that any 
extremal parallelepiped for i, ?7, ? can be connected with any other by a sequence 
of neighbors, and he therefore called the totality of all extremal parallelepipeds 
for &, -q, ? the chain of extremal parallelepipeds for t, r7, P. 

The discussion in Sections 3 and 4 below makes no use of the Minkowski neighbor 
algorithm; what is important is that Theorems A and B give a complete charac- 
terization of all nonsingular matrices P which belong to i, q, ,. In more general 
situations (see Section 5), some acquaintance with the Minkowski algorithm may 
be necessary. This algorithm is fully explained in a book by Hancock [2] and a paper 
by Zeisel [5]. 

Throughout this paper, F will denote a totally real cubic field with conjugate 
fields F' and F"; if X is an element of F, the conjugates of co will be denoted by c' 

and w". 
Suppose the coefficients 1 2, t3 of t are an integral basis of F, and let X and r 

be the respective conjugate linear forms i' and c". The discriminant D of F is positive, 
and we may assume that the signs of t, 42, t3 have been chosen in such a way that 
the determinant of i, i', t" is equal to + -VD. 

The norm function t77D = t '1" = N(S), say, is a cubic form in x, y, z with rational 
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integer coefficients and discriminanlt D. If P is any matrix belonging to t, q, ?, and 
we apply the substitution P[x' y' z']T = [x y z]T (here [ * *Tdenotes a column vector) 
to the form N(Q), we obtain another form N'(Q) with integral coefficients and de- 
terminant D or 0, depending on whether P has determinant 1 or 0. We say that the 
matrix P transforms the form N(t) into N'(t). 

Minkowski [3, p. 287] proved that transforming N(Q) by all of the infinitely 
many matrices P which belong to i, -q, - results in only a finite number of different 
forms, and also obtained the following theorem. 

THEOREM C (MINKOWSKI [3, p. 288]). Let F be a totally real cubic field. Let , 

42 3 be an integral basis of F and suppose 

= 41X + 42Y + (3Z, 

v- X + t2y + V)Z, 

I= Ax + WY + 4*Z. 

If { p, , r} is an arbitrary extremal parallelepipedfor i, r, r and P is the associated 
matrix, then if w is an arbitrary unit of norm 1 in F and S is the integral matrix which 
satisfies 

(2) [ 2 {a 3]S = [41 ' 42 W63, 

it follows that { p colj, - jw'1j, r lw" [''I is always an extremalparallelepipedfor #, n? 
The matrix S-'P is associated with this parallelepiped and transforms N(Q) into the 
same form that P does. 

Following Minkowski, we say that two extemal parallelepipeds which are related 
to each other in the manner described in Theorem C are equivalent. The chain of 
extremal parallelepipeds for (, , r is divided up into a finite number of classes of 
equivalent parallelepipeds. 

If S is an integral matrix satigfying (2), we say that S takes t to co e. Then, of course, 
S takes v to %'7 and r to w"D; and, as Minkowski remarked [3, p. 288], this means 
det S = cwc -= 1, since w is assumed to have norm 1. 

Theorem C is the basis for the discussion which follows; this is the reason for 
considering only linear forms whose coefficients form an integral basis of a totally 
real cubic field. 

3. Multiplicative Groups of Matrices with Two Generators. First, consider 
the general linear form x + ay + jz, where a defines a totally real cubic field F 
over the rationals and 1, a, f3 is an integral basis for F. Suppose 0 is a unit of norm 1 
in F such that 0 and its conjugates satisfy 

(3) 0 > 1, 0 > 0' >-1, -1 > 0" 

and 

(4) I0"I > 0. 

The need for these inequalities will become apparent later on. In fact, only a 
weaker form of the assumption (3) is actually required (see Section 5 below). The 
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stronger form given here is used to obtain the convenient but inessential Lemma 3 
below. 

Suppose the equation satisfied by 0, 0', 0" is 

(5) x3-d2x2-dlx- 1 - O, 

where d, and d2 are rational integers, of course. 
In accordance with the remarks in the introduction, we now specialize the linear 

form by taking a = 0, 0 = 02. This, of course, places on 0 the additional restriction 
that 1, 0, 02 is an integral basis for F. 

We are now prepared to begin lookilng at the method for finding solutions of 
Ix + y + ?O2zl max (y2, Z2) < c. We define 

= -(x + y + 0z), 

(6) (x + 0Oy ? 02Z), 

-(X + 0"/y + 0"12z) 

The determinant of these linear forms is (0 - 0')(0 - 0")(0' - 0"), which is positive 
by (3). 

If w is any unit of norm 1 in F, let Q(w) denote the matrix which takes t to w{. 
It is obvious from (5) and (6) that 

O 0 1 

Q(O) I 0 d, 

L_o 1 d2_J 

Let (p be a unit with norm 1 such that 0 and so are a pair of fundamental units 
for F, and suppose for later convenience that IV 1 > 1. Since 1, 0, 02 is an integral 
basis for F, there exist unique integers A, B, C such that- 

(7) (p A + B?+ C02., 

Similar expressions for pO and o02 can be calculated by using (5) and (7); we 
thus obtain 

A C B +d2C 

B A+ djC C + dl(B + d2C) 

_C B + _2C A + diC + d2(B + d2C)j 

LEMMA 1. The set of matrices r defined by 

r = {Q(c) : Q is a unit with norm 1 in F} 

is a commuitative group under matrix multiplication with generators Q(0) and Q(Qp). 
Proof. Any unit w with norm 1 in F is equal to 0m'pn for some unique integers 

m and n. Let Q-'(w) denote the inverse of the matrix Q(w) and Qk(w) (k an integer) 
denote the kth power under matrix multiplication of Q(w). It is obvious that Q-'() = 

Q(w-') and Q(wk) = Qk(w). Since Q(0) and Q(j) clearly commute, we have Q(0.p')= 
Q't(0)Q'(V), which proves the lemma. 
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LEMMA 2. Each matrix in r has the form 

-dlb + g b k 1 

-d2b + k g b + dlk 

b k g+ d2ki 

for some integers b, g and k. 
Proof. Both Q(0) and Q(jo) have the indicated form (with (b, g, k) equal to (0, 0, 1) 

and (C, A + d1C, B + d2C), respectively). It is easily verified that the product of 
any two matrices with the given form again has that form, so Lemma 2 follows from 
Lemma 1. 

The set of all matrices S which satisfy (2) with (, = 1, t2 = 0, t3 = 02 for some 
unit w of norm 1 is of course r. In order to make use of Theorem C with t, ', r as 
defined by (6), it is necessary to exhibit one extremal parallelepiped and its associated 
matrix. The special form of the coefficients of {, plus the conditions (3), enable us to 
find an extremal parallelepiped with a very simple associated matrix, as the following 
lemma shows. This simplifies the writing of some later proofs; however, the remarks 
in Section 5 below show that one could begin with an arbitrary extremal parallelepiped. 

LEMMA 3. Suppose (3) holds and (, q, t are defined by (6). Let , denote the greatest 
integer in (02 - 1)8-. Then { 0, 1, 0 O,2 - _@o" - 1 is an extremalparallelepipedfor {, 
,75 and the associated matrix is 

O 1 1 

PI= I 0 . 

Proof. In the notation of Theorem A, if we take e,1 2= -1, 63 + 1, then 
the matrix P1 transforms the system e1t, e27, f3r to 

F0 1 - A02+ AO + 1 +a +b -c 

F at 1 AO,2 +Mpa + I +g +h 

Off -1 0//2 _ 0A"f- 1 1 _+j -k +1 

The signs of b, g and k are obvious, the signs of a, f and j follow from (3), and the 
signs of c, h and I follow from (3) and the fact that (02 - 1)0-' > A _ 0. Thus the 
matrix 1' has the appropriate system of signs for case IV of Theorem A. 

The special condition "b > c or h > f or j > k" for case IV is satisfied be- 
cause j = 0O" j > 1 = k by (3). Hence by Theorem B the lemma follows if the in- 
equalities (1) hold. The inequalities a > b and g > f follow from (3), aiid I > j 
implies 1 > k because j > k. Only the inequalities a > c, g > h and I > j remain 
to be verified, and these are respectively equivalent to 

(8) ,t > 02_-0- 1, 

(9) o12 > at 

(0/2 + off > ItAO + 1. 

Clearly (8) and (9) follow from (3) and the fact that ,u > (02 - 1)0- _1. Finally, 
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(10) is obvious if , > 0, for then by (3) the left side of (10) is positive and the right 
side is negative. If A = 0 and (10) is false, then both 02 - 0 - 1 < 0 and 0,,2 + 

0" - I < 0 hold; these inequalities imply, in conjunction with (3), that 

(11) 2'1 + \/5) > 0 > 0 and 0 > 0" > -I(1 + a/5). 
A simple calculation shows that in fact there are no cubic polynomials of form (5) 
with three irrational roots satisfying (3) and (11). This proves the lemma. 

Let Q(w) be any element of r and suppose that the middle column of Q(&1-') has 
entries b, g, k. By Lemmas 2 and 3 and Theorem C, 

{ 01-1, 1/1-1 (0//2 -A0' - 1) j1j/1-1} 

is an extremal parallelepiped for {, q, r with associated matrix Q(c& )P,. The 
first column of Q(w-')P1 has entries b, g, k; hence by Theorem A and the definition 
of associated matrix 

(12) lb + go + kO2l = /llwi. 

4. An Array of Numbers. Any unit w of norm 1 satisfies c-' = 0mS&p for some 
unique integers m and n. Given this unique representation of w, define R(m, n) = Ocw'. 
We remark for future reference that if b, g, k are the entries of the middle column 
of Q(co1), then it follows from (12) that 

(13) JR(in, n)l = 0/lll = lb + gO + k021. 

Given (13), define 

S(m, n) = IR(m, n)l max(g2, k2). 

I give below a method for finding, for each fixed n, that value of m for which 
S(m, n) is a minimum. Let v(n) denote this value of m, so that S(v(n), n) _ S(m, n) 
for all integers m. We shall see later that the function v(n) is well defined. 

If the values of S(m, n) are tabulated in a rectangular array with the integers m 
arranged on a vertical axis and the integers n arranged on a horizontal axis (see 
Section 6 below), the method just mentioned is simply a procedure for locating 
the smallest entry in a given column of the array. It is convenient to think of the 
S(m, n) array as being divided into quadrants, the first to fourth quadrants being 
defined by m > 0, n > 0; m > 0, n < 0; m < 0, n < 0; m < 0, n _ 0, respectively. 

We are only interested in small values of S(m, n), so we may assume from now 
on that 

(14) 1 = omspi < 1. 

Since 0 > 1 and o I > 1, this eliminates the first quadrant of the S(m, n) array from 
further consideration. 

LEMMA 4. Let n be any fixed integer and define co1 = o"m(n. Let bi,m gm, km de- 
note the entries of the middle column of Q(co-'). Then for every integer m, 

b,+l = d2bm + d1bmi + bm-2, 

(15) gM+1 = d2gn + d1gn-1 + gm-2t 

km+, = d2km + d1kmn- + km-2. 
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Further, let p be any fixed integer and define 

D = (0 - 0')(0 - 0")(0" - 0'), 

B(p) = DI1(0"- 0')0-1(b, + g0 + k 02), 

G(p) = D' 0(0'2- 0"2)0-1(b + g 0 + k 02) 

and 

K(p) = D-10(0" - 0')0-1(bp + gl0 + k 02). 

Then for every integer m, 

bm+v = B(p)0m + B'(p)0'm + B"l(p)0",t 

(16) g.+, = G(p)0m + G'(p)0'm + G"(p)0"', 

km+p = K(p)0" + K'(p)0'" + K"(p)01", 

where W'(p), B"(p); G'(p), G"(p); and K'(p), K"(p) are the respective conjugates of 
B(p), G(p), K(p). 

Proof. By definition, Q(cw-',) - Q(0)Q(w-1), so matrix multiplication gives 
bm+l = k,,,, g,l = bm + dikmn km+l gm + d2km. A simple calculation using these 
equations gives (15). 

Thus bi,m g,a, k,, satisfy linear recurrence relations, each with associated poly- 
nomial (5). Straightforward computation of the solutions of these recursion relations 
in terms of the roots of (5) gives (16). 

The important fact about the coefficients B(p), G(p), K(p) in Lemma 4 is that, by 
(13), each coefficient is the product of w-' and some constant depending only on 
0, 0', 0", apart from sign. 

I next show that the function v(n) is closely related to another function u(n) de- 
fined in the following way: Let n be any fixed integer and suppose (A _ m)-l Define 
u(n) to be that value of m satisfying l cO"(n) /CO' I (n) Ij I 1 142/co,,- I for all integers 
m; that is, u(n) is the value of m for which J co/ I w is nearest to 1. Let E(n) denote 

COtn)/wu(). Note that it follows immediately from the definition of u(n) that 

2 2 
(17) 1+ 0-0 > IE(n)I > 1 + (00'2-1 

for every n. For E(n) = 01tu(n)</n/09(n)p11n = (0092)u(n)(,/2)n, and if jE(n)j > 1, then 

by the definition of u(n), 
(10o2)u(n) isop'P2jn - 1 < 1 - (00t2)u(n)+1 I9090'2n. 

This gives the first inequality in (17), and a similar argument in the case IE(n)I < 1 
gives the second inequality. 

It is easy to compute the value of u(n) for a given n by using the definition of the 
function u(n). The following lemma gives an alternative simple procedure for cal- 
culating u(n). 

LEMMA 5. Define E1 = 00,2 and E2 = ,2 The integer u(n) is equal to the znique 
integer m which satisfies 

log (2(1 + El)-') n log E2 log (2(1 + El)-') 
logE, < l+ E< 1+ log E1 
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Proof. We have IE(n)I- = n' E' and 0 < El < 1 (by (3)). Therefore it follows 
from (17) that either 

log (2(1 + El)-') > u(n) log El + n log Es > 0 (if IE(n)I > 1) 

or 

0 > u(n) log E1 + n log E2 > log (2E(1 + El)-') (if IE(n)I < 1). 

Rearranging and combining these inequalities gives (18), which obviously defines 
a unique integer m. In fact, since 

0> log (2(l + x)-')/log x > -2 for O < x < 1, 

the fraction m/n determined by the inequalities in (18) is one of the two fractions of 
form k/n which are closest in value to -log E2/log E1. 

COROLLARY. Let X denote -log E2/log E1; then l u(n)/n= X. 
It follows from the above corollary that the path through the S(m, n) array formed 

by the numbers S(u(n), n), n any integer, approximates a straight line of slope X 
passing through the "origin" of the array. Thus the path lies either in the first anid 
third quadrants of the S(m, n) array (if X > 0) or in the second and fourth quadrants 
(if X < 0). However, by (14), the only numbers in the S(m, n) array which are of 
interest are those for which m log 0 + n log IsoI < 0. Hence we need consider only 
part of the S(u(n), n) path, namely (as a simple calculation shows) the part in 

the third quadrant if X > 0, 

(19) the second quadrant if X < 0 and log fHof > log X'f 

the fourth quadrant if X < 0 and log i < log sO' 

For later reference, define the principal quadrant to be the quadrant specified in 
(19) and define 

+ 1 the principal quadrant is the fourth quadrant, 

- -1 the principal quadrant is the second or third quadrant. 

Thus n - yo means InI -a in the principal quadrant. 
The connection between u(n) and v(n) is exhibited in the following theorem, 

which is the cornerstone of the method introduced in this paper. The proof given is 
not the simplest possible, but enables very good values of cl and c2 to be computed. 

THEOREM 1. For every integer n such thatyn > 0, 

cl > v(n) - u(n) 2 C2, 

where cl and C2 are integers which depend only on 0, 0', 0". 
Some new notations are necessary for the proof. For the remainder of this section, 

let n be a fixed integer, arbitrary unless otherwise specified, and define C-' = - " 
Let bm, gm, km denote the entries of the middle column of Q(co`), so that Lemma 4 
applies. Define 

B =-wu(f)B(u(n)), G = wur()G(u(n)), K = 'u(n) K(u(n)). 
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Thus the numbers IBI, IGI, IKI and their conjugates depend only on 0, 6', 0", and in 
particular are independent of n. Further let Tm max( gu(n)+m 9 Iku(n)+mI). 

Since by definition R(u(n) + ni + 1, n)- OR(u(n) + m, n) and S(u(n) + m, n) = 

JR(u(n) + m, n)IT., the inequality S(u(n) + m, n) < S(u(n) + m + 1, n) holds if 
and only if 

(20) Tm+i/Tm > f9 1/2 

The assumptions (3) and (4) (here (4) is used for the first time) and the equations 
(16) with p u(n) imply that Tm is equal to either g,u() +m or ku(n) +m for all large m, 
depending on whether 16 + 6' I is > 1 or < 1, respectively. Similarly, T_m is equal to 
either gu (n)-m or k,(n) -m for all large m, depending on whether 10 + 0" I is > 1 or <1, 
respectively. It follows that Tmn+/Tm - IO" I > -1/2 as m -- + cc and Tm+l /T 

6 I' < 61/2 as m -* - co ; thus (20) is true for all sufficiently large m and false for all 
sufficiently small m. 

Clearly v(n) satisfies m+ ?; v(n) - u(n) > m_ for any integers m+ and m- such 
that (20) holds for all m '> m+ and (20) is false for all m ?<i_ m- 1. Provided m+ and 
m_ depend only on 0, 6', 0" we may take cl = m+ and C2 =m_ in Theorem 1. The 
following lemma shows that integers mi and m_ satisfying this proviso do exist. 

LEMMA 6. Let n be any integer such that yn > 0. For each integer m _ 0, the assump- 
tion Tm+i/Tm < 9-1/2 implies an inequality of the form 

(21) 4-E(n) > k(m), 

where k(m) is a constant depending only on 0, 6', 0" and m. There exists an integer 
ml ? 0 depending only on 0, 6', 0" such that for each integer m m n1, the inequality 
(21) is false. 

For each integer mn- < 0, the assumption Tm.+/Tm > a-1/2 implies an inequality of 
the form (21), where k(m) is a constant depending only on 0, 6', 0" and m. There exists 
an integer M2 ?- 0 depending only on 0, 6', 0" such that for each integer mi< M2, the 
inequality (21) is false. 

Proof. For any m, Tm+,,/Tm is equal to one of the four quotients 

Igu(n) +m+l/gu(n) +m1) 9gu(n)+m+l/ku(n)+mI, Iku(n)+m+l/ku(n) +m11 Iku(n) m+1/gu(n) +m1; 

let us say Tm+i/Tm is of type 1, 2, 3 or 4, respectively. Of course for a given m the 
type of Tmxi/Tm may be different for different n. Whatever the type of Tm+I/Tm, if 
we let I(u(n)) denote the appropriate one of the numbers G(u(n)), K(u(n)) for Tm+i, 
and let J(u(n)) denote the appropriate one of the numbers G(u(n)), K(u(n)) for Tm, 
then by (16) 

Tm.i _ II(u(n))m`l + I'(u(n))6m+?l + IV'(u(n))6OJm?lI 
(22) Tm I J(u(n))6m + J/(U(n))6Om + J11(u(n))6" I 

The next step is to multiply the numerator and denominator of the expression 
on the right-hand side of (22) by W/()/o. If we define I = IWu(n)I(u(n))I and J = 

0u(fnA(u(n)) , (22) becomes 

(23) Tm?l = 6J(WU(n)/C)u(n))I + 6'E(n)I'(6'/0)m + O"I"(0111 
Tm - (Wu(n)/c,u (n)) J + E(n) J'(6//Oq)m I+-."'o"/0r 

It is easy to verify that Icou(n) I -- co as n -4 y co. Thus for n satisfying -yn > 0 the 
terms involving W? (n)/(0u(n) on the right-hand side of (23) have such small absolute 
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value (except possibly for a few values of n with In I small) that they can be neglected. 
It follows that the assuimption T,m+I/Tm < a-/ is essentially equivalent to 

(24) 10'E(n)I'(0/110) + 0"I"(0"/- Oy < 0-1/2 
IE(n)J'(0'/0)"1 + J/(0"/ 0)I 

M 

and this inequality can be rearranged into the form (21), since everything on the 
left-hand side except E(n) is independent of n. 

For the next step in the argument, we may assume that the numbers I', J', I", J" 
(which are defined in terms of T,+i and Tm, and so vary with the type of Tm+ITm) 
have fixed values, corresponding to a single type of Tm+I/Tm, as m varies in (24). 
Then, since by (17) IE(n)l is bounded above for all n, the left-hand side of (24) tends 
to I 0"I"/J" I uniformly with respect to n as m + co. Provided that I 0"I"/J" I > 
0-1/2, it follows that (24) is false for all sufficiently large m; thus if we calculate k(m) 
for m = 0, 1, 2, ... in succession, we mnust reach a value m- min, depending only 
on 0, 0', 0" and the type to which the values of I" and J" correspond, such that the 
inequality (21) contradicts the first inequality in (17) for all ni ?> mo. If I 0"l"/J"t > 
0-1/2 holds for all four types, the first part of the lemma follows if we take ml equal 
to the largest of the four values of nm0 found for the different types. 

It is obvious from (3) that l0"I"/J"I > 0-1/2 holds for types I and 3, and a cal- 
culation using (3) shows that the inequality also holds for type 2. However, for type 
4, 10"I"/J"I > 0-1/ is equivalent to Io0" > 01/2(0 + 0'), which might be false. If so, 
it is necessary to use an additional argument, similar to the above, to show that 
Tm+i/Tm is necessarily of type 1 or 3 if m is larger than some integer depending only 
on 0, 0', 0". Then the first part of the lemma follows. 

Similar reasoning gives the second part of the lemma, if we let m -o in (24) 
with the inequality sign reversed and use the second inequality in (17) in place of 
the first. The relevant inequality is I o'I'/J' l < -1/2. This follows from (3) in the case 
of types 1 and 3, and from a calculation using (3) and (4) in the case of type 2. The 
inequality I 0'I'/J'l 0<"2 for type 4 is equivalent to 01/2 1 01 I < 1 0 + 0"j 1, which 
may be false. If so, as in the first part of the lemma, an extra argument is needed to 
complete the proof. 

It follows from Lemma 6 that (20) holds for m _ nil and is false for m < mi. 
Thus we may take m+ = ml and mi = m2 + 1, and Theorem 1 holds with cl = M, 
and c2 = m2 + 1. 

The following lemma shows that the restriction yn > 0 in Theorem 1 and Lemma 6 
can exclude only a finite number of small values of S(m, n), since the only values of 
interest are, by (14), those for which m log 0 + n log 1joI < 0. 

LEMMA 7. Except possibly for some values of n with InI small, the inequality 
v(n)log 0 + n log I oI > 0 holds for each n satisfying'yn < 0. 

Proof By Lemma 5, Corollary and the definitions of -y and X, the inequality 
u(n)log 0 + n log IsoI > 0 holds for each n satisfying yn < 0, except possibly for some 
values of n with In i small, and indeed 

lim n_'(u(n) log 0 + n log 1pj) = X log 0 + log 'poj 
n-- a) c 

We shall show that v(n) - u(n) is bounded below by a function which depends on 
0, 0', 0" and on n, and that this function is small enough in absolute value to give 
the lemma. 
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The reasoning resembles that in the proof of Lemma 6, the notation of which 
is also used here. First we rewrite (22) by multiplying the numerator and denominator 
of the right-hand side by wu(n)/ O: 

Tm+i ?_I + 0) + 0"I "(ci(fl) IAI(n)JkV I/. 
Tm I J + J1('OU(n)/Ous(n))(0 /0) n + J ('(u (n) /W-u(f) )(0"/ 0) 

Since 0 I 0 as n -* -'yco and I0"/01 > 1 holds by (4), if m < 0 the terms 
involving ( on the right-hand side have such small absolute value (except 
possibly for a few values of n witb In I small) that they can be neglected. Thus the 
assumption Tm+I/Tm > -/2 is essentially equivalent to 

(25) 01i + 0 I'(C,U( )/(l))(0l/ y)n 
I > 0-1/2 

J + J'(WUcn)/W,'(n))(0'/0)mI 

The left-hand side of (25) tends to j0'I'/J'j as m - co, but the approach to 
the limit is not uniform in n (this is different from the corresponding situation in 
Lemma 6). However, 

(26) Wu (n-") | 1 if and only if ni < (l j1 - log kp'I'\ - u(n) 
\u01 log I0' -log 0/ 

and 

log jp -log kp' _ u(n) log jpj -log . = 

log I0' -log 0 n log I0 I-log 0 

as n -* -y . It is easy to verify that nw is negative if yn < 0. 
Thus if we take m = nw + m' in (25), it follows from (26) by an argument similar 

to that used in the proof of Lemma 6 that there exists an integer m2 _ 0 depending 
only on 0, o', 0" such that for each n satisfying yn < 0, the inequality (25) is false 
for all m' < m,. Hence v(n) ? u(n) + nw + m,, and in order to prove the lemma 
it suffices to verify that Ilog Ifj I(log O)-' + Xj > Iwvj. 

The method for finding S(v(n), n) is now clear. By Lemma 7, we need only consider 
n satisfying yn > 0. For each such n, it follows from Theorem 1 that only S(u(n) + i, n) 
(i = c2, c2 + 1, , c,) need be calculated. These calculations are easily made 
because u(n) can be determined very simply (for example, by using Lemma 5). Given 
u(n), it is only necessary to compute the middle column of Q(0n(n)+ietf) (i = C2, 

c2 + 1, . . ., c,); this gives all the information needed to find S(u(n) + i, n). 
The only important fact which remains to be established is that the numbers 

S(v(n), n), yn > 0, are bounded above by a constant independent of n. This means 
that the numbers S(v(n), n) are uniformly small values of S(m, n), as we require. The 
following lemma suffices for our purpose. 

LEMMA 8. Let n be any integer such thatyn > 0. Then the inequality S(u(n), n) <C3 

holds, where c3 is a constant depending only on 0, 0', 0". 
Proof. It follows from the definition of E(n) that E(n) - u n) u () = Ou (n)'u 

Since I coulI ---> c as n -* -yco, it follows from (16) with ni 0 and p = u(n) that 

lim sup co' gu(nl)I < sup D 2(E(n)I"' 0'(0"' - 02)! + IE(n) V"2 jO"(0'- 

and 
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lim sup lw-k2(nf)I 1 sup D-2(jE(n)j112 0'(G - 0_")1 + IE(n)V-112 10"(0' - 0)1)2, 
n-ay co n X 

where the supremum on the right-hand side of each inequality is finite because of 
(17). By (13), these inequalities imply the lemma. 

S. The Method Applied to General Linear Forms. It is not difficult to modify 
the above discussion so that it applies to the more general form t x + ay + I3z, 
where a defines a totally real cubic field F over the rationals and 1, a, t3 form an 
integral basis for F. We replace (6) by 

4- ?(x + ay + 3z), 

vE(x + aty + Wz), 

= z(x + a"y + i3"z), 

where the i sign is chosen so that the determinant of the forms is positive. 
The first step is to find a pair 0, so of fundamental units with norm 1 in F such 

that the inequalities 

(27) 0 > 1, 10,1 < 1, 10"l > 0 

and iopI > 1 hold. Lemma 9 below shows that such a pair can always be found. 
The set of matrices r is defined as before (of course Q(0) no longer has the par- 

ticularly simple form of Section 2 above), and Lemma 1 holds. Lemma 2 may be 
restated as follows: For each matrix in r, the first column is equal to the matrix 
product of Q(a1-) and the second column; and the third column is equal to the matrix 
product of Q(a-'1) and the second column. 

It is no longer possible to give a simple explicit way of finding an initial extremal 
parallelepiped, as was done in Lemma 3; so we suppose that { a, g, 1} is an extremal 
parallelepiped for #, 7q, r with associated matrix 

Fr r2 r3l 

PI s s2 S3 

Lt t2 t3j 

Let n be any fixed integer, define co' = 0,mn and suppose 

(1bm) bm b (2 
bm 

Q((A)ml) 
gm (1 

gn 
g12 

(1) k ( k2)in 

where by Lemma 2 the entries in the first and third columns are linear combinations 
of bn, g,,,, km whose coefficients depend on the entries of the matrices Q(az-) and 
Q(a'fl). By the argument used to derive (13), we obtain 

(28) bm + gina + km: = (r + sa + t3)/lw., 

where bm, 9rn, km denote the entries of the first column of Q(w-')P1; each of b6, 9 
km is therefore a linear combination of bm, gm and km with coefficients depending on 
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the entries of the matrices Q(ac') and Q(ac'O), and on r, s and t. We denote the right- 
hand side of (28) by R(m, n), and define S(m, n) - R(m, n)j max(gO, k2). 

The recursion relations (15) remain valid, which implies that the same relations 
hold for bE., m, kKm. Solving the latter recursion relations gives (16) with bm,p, gin+, 
km+, replaced by b6mr, 9+p, kmr+p, respectively, and with coefficients (using (28)) 
B(p)-D-1 BWo' 1, G(p) = D-'Gw,- 1, K(p) = D-lKw- 1, where D denotes the determinant 
of #, , - and B, G, K are numerical constants. 

This analogue of Lemma 4, in conjunction with (28), enables all the previous 
arguments concerning the functions u(n) and v(n) to be carried through as before. 
Note that the conditions (27) are used in the proof of Theorem 1. It can be shown 
that these conditions, although sufficient, are not necessary for the truth of Theorem 1. 

Finally, we show that there always exists a pair 0, sp of fundamental units with 
norm 1 in F such that (27) holds. 

LEMMA 9. Suppose -y, 8 is a pair offundamental units for F such that 'y and 8 have 
norm 1, -y > 1, [-y'j < 1, 1y"1 < 1 and I81 > 1. Th1en there exist integers M and N 
such that 0 = .yMA 8N satisfies (27) and suich that there exists a unit p for which 0, v is a 
pair of finclamental units for F. 

Proof. Define 

A = (-log 131)(logy)y', A' (-log 16'1)(log ID-IY'I) 
A" = (-log 16"j)(log Jy"J)-1 and B = (log'y)(log IvY"I') . 

The hypothesis that y and 8 are fundamental units implies that no two of A, A', 
A" are equal, 

We distinguish two cases: suppose first that at least one of the two inequalities 
A < A', A < A" is false. We may assume that A" < A and A" < A' by interchanging 
the definitions of F' and F" (as is permissible), if necessary. In order that 0 = 81 N 

satisfy (27) for some integers M, N with N < 0 it is necessary and sufficient that 
M/N < A, M/N < A' and M/N > A" + N-'B hold. Since A" < min(A, A'), 
these inequalities are satisfied for any integers M, N < 0 such that INI is sufficiently 
large and M/N lies in the interval (A", min(A, A')). If we further take M and N to 
be relatively prime, with N even if 8 is negative, then 6 = 7yM8N satisfies the lemma: 
for it is easily seen that given any integers P, Q satisfying MQ - PN -= 1, the 
hypothesis that -y, 8 is a pair of fundamental units for F implies that 0, YP6' is also 
such a pair 

Next suppose A < A' and A < A". We may assume that A < A' < A" by inter- 
changing the definitions of F' and F", if necessary. An argument similar to the above 
shows that 0 = 8ilf N satisfies the lemma for any integers M, N with N > 0 such tha t 
N is sufficiently large, M/N lies in the interval (A', A"), and M and N are relatively 
prime with N even if 8 is negative. This completes the proof of the lemma. 

A pair of fundamental units satisfying the hypotheses of Lemma 9 exists in any 
totally real cubic field F: Given any pair y, 8 of fundamental units, each with norm 1, 
we may suppose y > 1 and 181 > 1 (replacing -y, 8 by -y, 7y2 if both y and 8 are 
negative). If y does not have two conjugates whose absolute values are less than 1, 
we may define F' and F" so that Iy'I < 1 and 1Y"I > 1. Then by reasoning almost 
exactly the same as in the proof of Lemma 9, we can find a pair ym8 bAP yP8Q (M, N, 
P, Q integers satisfying MQ - PN = 1) of fundamental uinits for F which satisfies 
the hypotheses of Lemma 9. 
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6. A Numerical Example. Let F be the field defined by 0 = 2 cos(27r/7). Then 
6 is a root of the polynomial equationi X3 + X2 - 2x - I 0, which is of the form 
(5) and has roots 

6 1.247, 0' -.445, 0" -1.802. 

We apply the above method to the linear form x + 6y + 02z, which is permissible 
since 1, 6 62 is an integral basis for F. The conditions (3) and (4) are satisfied, and 
we take 6 and so = I/6' as a pair of fundamental units of F (6' and 6" belong to F, 
because F is a cyclic or Abelian field). We take the parallelepiped { 0, 1, 6/2 - 1 , 

given in Lemma 3, as the initial extremal parallelepiped. 
The principal quadrant is the second quadrant, and X -.263. The inequalities 

j6l,F1I/J,,l > 0-1/2 and l6'I'/J'l < -1/2 in the notation of Lemma 6 hold for each 
type of Tm+I/Tm, and carrying out the computations indicated in the proof of Lemma 
6 gives cl = 1 and c2 = -3 in Theorem 1. 

Table 1 gives a portion of the second quadrant of the S(m, n) array; a few values 
with n = - I do not satisfy (14) and are omitted. The numbers S(u(n), n) are indicated 
by an asterisk. Table 2 gives the entries b, g, k of the middle column for the matrices 
Q(O"`('f). These entries all satisfy lb + Og + O2kl max(g2, k2) < 1. 

7. Finding all Solutions Below a Certain Bound. It is well known [1, p. 79] that 
inf Ix + ay + f3zl max(y2, z2) > 0, where 1, a, j are elements of a real cubic field 
which are linearly independent over the rationals and the infimum is taken over all 
integers x, y, z not all zero. For the example of Section 6, we have: 

LEMMA 10. Let 0 2 cos(27r/7); then 

lim inf min lx + Iy + 62zf max(y2, Z?) = i49(62 + 30 - 3) ~ .1874, 
M-.co M 

vhere the min is taken over all integers x, y, z such that max(lyI, Izl) = M. 
Proof. If x + Oy + 02z iS small, then 

1 < i(x + oy + 02z)(x + 6'y + 0'2z)(x + O",Y + 6"2z)1 

' [(x + Gy + 02z)((6' _ 6)y + (0/2 _ 02)z)(("// _ O)y + (0//2 _ 02)z)j 

(29) I 
+X + Gy+ 0? z)(6 _ 6')(6 _ 6",)(y2 + (6 - I)yZ + (02 - 2)2)I 

? l(x + Gy + 62)(36 + 20 - 2)(1 + (1(0 - 1))2(2- - )jy 

?lx + 6y + 2z1 (49/4)(62 + 30 - 3)Y1 max(y2, Z2). 

The second inequality holds because the maximum of 1 + (6 - l)x + (02 - 2)X2 

(which occurs at x = 2(6 - 1)(2 - 62)-1) is greater than the maximunm of -x2 
(6 - l)x _ (02 - 2) (which occurs at x = 0(l-6)). 

Equality can occur in the first inequality of (29) only if x + 6y + 02z is a unit, 
that is, only if x, y, z are the entries of the middle column of Q(0ms") (in the notation 
of Section 6) for some m and n. Near equality can occur in the second inequality 
of (29) only if z/y is nearly equal to 2(6 - 1)(2 - 02)-Y1 .2775. It is a straight- 
forward matter to verify that this near equality does in fact occur for infinitely many 
values of z/y. (Indeed, more can be shown: We have z/y - .2775, where y and z 
are the last two entries of the middle column of Q(6"V'), only if n is even and m- 
t(n) - l.) 
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TABLE 2. Entries of middle column of Q(ov(n)v9) 

n v(n) b g k n v(n) b g k 

-1 -1 -2 0 1 -21 5 -2,258 -243 1,647 
-2 -1 3 -1 -1 -22 5 2,626 -1,647 -368 
-3 0 3 0 -2 -23 5 -6,531 368 3,905 
-4 0 -4 2 1 -24 5 9,525 -3,905 -2,994 
-5 1 -5 -1 4 -25 6 10,436 911 -7,442 
-6 1 5 -4 0 -26 6 -12,519 7,442 2,083 
-7 1 -14 0 9 -27 7 -17,878 -5,359 15,795 
-8 1 19 -9 -5 -28 7 14,602 -15,795 3,276 
-9 2 23 4 -18 -29 7 -48,275 -3,276 33,673 

-10 2 -24 18 1 -30 7 59,601 -33,673 -11,326 
-11 2 65 -1 -41 -31 8 81,948 22,347 -70,622 
-12 2 -90 41 25 -32 8 -70,927 70,622 -11,021 
-13 3 -106 -16 81 -33 8 223,497 11,021 -152,570 
-14 3 115 -81 -9 -34 8 -283,403 152,570 59,906 
-15 3 -302 9 187 -35 9 -376,067 -92,664 316,161 
-16 3 426 -187 -124 -36 9 343,309 -316,161 32,758 
-17 4 489 63 -365 -37 9 -1,035,537 -32,758 692,228 
-18 4 -550 365 61 -38 9 1,346,088 -692,228 -310,551 
-19 4 1,404 -61 -854 -39 10 1,727,765 381,677 -1,417,214 
-20 4 -2,015 854 611 -40 10 -1,656,639 1,417,214 -71,126 

This proves that given any e > 0, the inequality 

lx + Gy + 02zJ max(y2, z2) < (4/49)(02 + 30 - 3) + e 

has infinitely many solutions in integers x, y, z. Since it is clear from (29) that given 
any e > 0, 

IX + Gy + 02ZI max(y2, Z2) > (4/49)(02 + 30 - 3) - e 

for all except possibly a finite number of integer triples x, y, z, the lemma follows. 
A calculation similar to (29) can be performed for any linear form x + ay + 13z, 

where 1, a, f3 form an integral basis for a totally real cubic field. The calculation 
gives a constant L(Q, ,B) such that given any e > 0 

Ix + ay + O1zI max(y2, Z2) > L(a,3) -e 

holds except possibly for a finite number of integer triples x, y, z. Since the lower 
bound 1 in the first line of (29) can be replaced by 2 if x + Gy + 62z is not a unit, 
all but a finite number of solutions of Ix + ay + (zl max(y2, z2) < 2L(a, B) -2e 
occur with x, y, z such that x + ay + Oz is a unit. Hence if in the notation of (28) 
the initial extremal parallelepiped is chosen in such a way that r + sa + to3 is a unit, 
then for some c ? 2L(a, B) all solutions of [x + oxy + (3zj max(y2, z2) < c can be 
generated by the method of this paper. 
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